Jacquier, N. M. A. et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6, 610–619 (2020).
Google Scholar
Fujita, M. K., Singhal, S., Brunes, T. O. & Maldonado, J. A. Evolutionary dynamics and consequences of parthenogenesis in vertebrates. Annu. Rev. Ecol. Evol. Syst. 51, 191–214 (2020).
Google Scholar
Darwin, C. The Different Forms of Flowers on Plants of the Same Species (D. Appleton, 1897).
Hojsgaard, D. & Hörandl, E. The rise of apomixis in natural plant populations. Front. Plant Sci. 10, 436713 (2019).
Google Scholar
Majeský, Ľ., Vašut, R. J., Kitner, M. & Trávníček, B. The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS ONE https://doi.org/10.1371/journal.pone.0041868 (2012).
Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).
Google Scholar
Underwood, C. J. et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 54, 84–93 (2022).
Google Scholar
Fu, J. et al. Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Mol. Plant 15, 577–580 (2022).
Google Scholar
Kelliher, T. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542, 105–109 (2017).
Google Scholar
Liu, C. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol. Plant 10, 520–522 (2017).
Google Scholar
Gilles, L. M. et al. Loss of pollen‐specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 36, 707–717 (2017).
Google Scholar
Chaikam, V. et al. Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor. Appl. Genet. 128, 159–171 (2015).
Google Scholar
Sunflowerseed Explorer. USDA Foreign Agriculture Service https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2224000 (2024).
Jiang, C. et al. A reactive oxygen species burst causes haploid induction in maize. Mol. Plant 15, 943–955 (2022).
Google Scholar
Leclercq, P. Une stérilité mâle cytoplasmique chez le Tournesol. In Annales de l’Amélioration des Plantes (ĽInstitut National de la Recherche Agronomique, 1969).
Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C. & Cravatt, B. F. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 298, 1793–1796 (2002).
Google Scholar
Newcomb, W. The development of the embryo sac of sunflower Helianthus annuus after fertilization. Can. J. Bot. 51, 879–890 (1973).
Google Scholar
Miller, J. & Fick, G. Adaptation of reciprocal full‐sib selection in sunflower breeding using gibberellic acid induced male sterility 1. Crop Sci. 18, 161–162 (1978).
Google Scholar
Wang, H., Hou, H., Jan, C. C. & Chao, W. S. Irradiated pollen-induced oarthenogenesis for doubled haploid oroduction in sunflowers (Helianthus spp.). Plants 12, 2430 (2023).
Google Scholar
Laurie, D. & Bennett, M. Early post-pollination events in hexaploid wheat × maize crosses. Sexual Plant Reprod. 3, 70–76 (1990).
Google Scholar
Patial, M., Pal, D., Thakur, A., Bana, R. S. & Patial, S. Doubled haploidy techniques in wheat (Triticum aestivum L.): an overview. Proc. Natl Acad. Sci. USA 89, 27–41 (2019).
Dordas, C. Foliar boron application improves seed set, seed yield, and seed quality of alfalfa. Agron. J. 98, 907–913 (2006).
Google Scholar
Xin, P., Li, B., Zhang, H. & Hu, J. Optimization and control of the light environment for greenhouse crop production. Sci. Rep. 9, 8650 (2019).
Google Scholar
Rieu, I., Twell, D. & Firon, N. Pollen development at high temperature: from acclimation to collapse. Plant Physiol. 173, 1967–1976 (2017).
Google Scholar
Cashmore, A. R., Jarillo, J. A., Wu, Y.-J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).
Google Scholar
Melchinger, A. E., Molenaar, W. S., Mirdita, V. & Schipprack, W. Colchicine alternatives for chromosome doubling in maize haploids for doubled‐haploid production. Crop Sci. 56, 559–569 (2016).
Google Scholar
Blakeslee, A. F. & Avery, A. G. Methods of inducing doubling of chromosomes in plants: by treatment with colchicine. J. Hered. https://doi.org/10.1093/oxfordjournals.jhered.a104294 (1937).
Hardham, A. & Gunning, B. Structure of cortical microtubule arrays in plant cells. J. Cell Biol. 77, 14–34 (1978).
Google Scholar
Manzoor, A., Ahmad, T., Bashir, M. A., Hafiz, I. A. & Silvestri, C. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 8, 194 (2019).
Google Scholar
Verdeil, J.-L., Alemanno, L., Niemenak, N. & Tranbarger, T. J. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci. 12, 245–252 (2007).
Google Scholar
Yu, J.-K. Advanced breeding technologies for accelerating genetic gain. Plant Breed. Biotechnol. 8, 203–210 (2020).
Google Scholar
Yao, L. et al. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 4, 530–533 (2018).
Google Scholar
Lv, J. et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 38, 1397–1401 (2020).
Google Scholar
Wang, N., Gent, J. I. & Dawe, R. K. Haploid induction by a maize cenh3 null mutant. Sci. Adv. 7, eabe2299 (2021).
Google Scholar
Zhong, Y. et al. In vivo maternal haploid induction in tomato. Plant Biotechnol. J. 20, 250–252 (2022).
Google Scholar
Rao, K. S. & Rohini, V. Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): a simple protocol. Ann. Bot. 83, 347–354 (1999).
Google Scholar
Qu, Y. et al. Mapping of QTL for kernel abortion caused by in vivo haploid induction in maize (Zea mays L.). PLoS ONE 15, e0228411 (2020).
Google Scholar
Shen, K., Qu, M. & Zhao, P. The roads to haploid embryogenesis. Plants 12, 243 (2023).
Google Scholar
Lv, J. & Kelliher, T. Recent advances in engineering of in vivo haploid induction systems. Methods Mol. Biol. 2653, 365–383 (2023).
Google Scholar
Ferrie, A. & Caswell, K. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss. Org. Cult. 104, 301–309 (2011).
Todorova, M., Ivanov, P., Shindrova, P., Christov, M. & Ivanova, I. Doubled haploid production of sunflower (Helianthus annuus L.) through irradiated pollen-induced parthenogenesis. Euphytica 97, 249–254 (1997).
Davis, G. L. The life history of Podolepis jaceoides (Sims) Voss-II. Megasporogenesis, female gametophyte and embryogeny. Phytomorphology 11, 206–219 (1961).
Google Scholar
Cyprys, P., Lindemeier, M. & Sprunck, S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat. Plants 5, 253–257 (2019).
Google Scholar
Kallamadi, P. R. & Mulpuri, S. Ploidy analysis of Helianthus species by flow cytometry and its use in hybridity confirmation. Nucleus 59, 123–130 (2016).
Garcés, R. et al. Characterization of sunflower seed and oil wax ester composition by GC/MS, a final evaluation. LWT 173, 114365 (2023).
Google Scholar
Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
Silverman, B. W. Density Estimation for Statistics and Data Analysis (Routledge, 2018).
Duncan, K. E., Czymmek, K. J., Jiang, N., Thies, A. C. & Topp, C. N. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. Plant Physiol. 188, 831–845 (2022).
Google Scholar
Deng, J. et al. Concept and methodology of characterising infrared radiative performance of urban trees using tree crown spectroscopy. Build. Environ. 157, 380–390 (2019).
Google Scholar
Aznar‐Moreno, J. A. et al. Sunflower (Helianthus annuus) long‐chain acyl‐coenzyme A synthetases expressed at high levels in developing seeds. Physiol. Plant. 150, 363–373 (2014).
Google Scholar